二叉排序树又称“二叉查找树”、“二叉搜索树”。
二叉排序树:或者是一棵空树,或者是具有下列性质的二叉树:
1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
3. 它的左、右子树也分别为二叉排序树。
二叉排序树通常采用二叉链表作为存储结构。中序遍历二叉排序树可得到一个依据关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即是对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索、插入、删除的时间复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表,如右斜树)。
/* 二叉树的二叉链表结点结构定义 */typedef struct BiTNode /* 结点结构 */{ int data; /* 结点数据 */ struct BiTNode *lchild, *rchild; /* 左右孩子指针 */} BiTNode, *BiTree;
虽然二叉排序树的最坏效率是O(n),但它支持动态查找,且有很多改进版的二叉排序树可以使树高为O(logn),如AVL、红黑树等。
二元排序树的查找算法
在二元排序树b中查找x的过程为:
1.若b是空树,则搜索失败,否则:
2.若x等于b的根节点的数据域之值,则查找成功;否则:
3.若x小于b的根节点的数据域之值,则搜索左子树;否则:
4.查找右子树。
算法实现:
/* 递归查找二叉排序树T中是否存在key, *//* 指针f指向T的双亲,其初始调用值为NULL *//* 若查找成功,则指针p指向该数据元素结点,并返回TRUE *//* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */Status SearchBST(BiTree T, int key, BiTree f, BiTree *p) { if (!T) /* 查找不成功 */ { *p = f; return FALSE; } else if (key==T->data) /* 查找成功 */ { *p = T; return TRUE; } else if (keydata) return SearchBST(T->lchild, key, T, p); /* 在左子树中继续查找 */ else return SearchBST(T->rchild, key, T, p); /* 在右子树中继续查找 */}
二叉排序树的插入算法
利用查找函数,将关键字放到树中的合适位置。
/* 当二叉排序树T中不存在关键字等于key的数据元素时, *//* 插入key并返回TRUE,否则返回FALSE */Status InsertBST(BiTree *T, int key) { BiTree p,s; if (!SearchBST(*T, key, NULL, &p)) /* 查找不成功 */ { s = (BiTree)malloc(sizeof(BiTNode)); s->data = key; s->lchild = s->rchild = NULL; if (!p) *T = s; /* 插入s为新的根结点 */ else if (keydata) p->lchild = s; /* 插入s为左孩子 */ else p->rchild = s; /* 插入s为右孩子 */ return TRUE; } else return FALSE; /* 树中已有关键字相同的结点,不再插入 */}
二叉排序树的删除算法
在二叉排序树中删去一个结点,分三种情况讨论:
1.若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
2.若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树(当*p是左子树)或右子树(当*p是右子树)即可,作此修改也不破坏二叉排序树的特性。
3.若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整。比较好的做法是,找到*p的直接前驱(或直接后继)*s,用*s来替换结点*p,然后再删除结点*s。
/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点, *//* 并返回TRUE;否则返回FALSE。 */Status DeleteBST(BiTree *T,int key){ if(!*T) /* 不存在关键字等于key的数据元素 */ return FALSE; else { if (key==(*T)->data) /* 找到关键字等于key的数据元素 */ return Delete(T); else if (key<(*T)->data) return DeleteBST(&(*T)->lchild,key); else return DeleteBST(&(*T)->rchild,key); }}/* 从二叉排序树中删除结点p,并重接它的左或右子树。 */Status Delete(BiTree *p){ BiTree q,s; if((*p)->rchild==NULL) /* 右子树空则只需重接它的左子树(待删结点是叶子也走此分支) */ { q=*p; *p=(*p)->lchild; free(q); } else if((*p)->lchild==NULL) /* 只需重接它的右子树 */ { q=*p; *p=(*p)->rchild; free(q); } else /* 左右子树均不空 */ { q=*p; s=(*p)->lchild; while(s->rchild) /* 转左,然后向右到尽头(找待删结点的前驱) */ { q=s; s=s->rchild; } (*p)->data=s->data; /* s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值) */ if(q!=*p) q->rchild=s->lchild; /* 重接q的右子树 */ else q->lchild=s->lchild; /* 重接q的左子树 */ free(s); } return TRUE;}
二叉排序树性能分析
每个结点的Ci为该结点的层次数。最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和logn成正比(O(log2(n)))。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树为一棵斜树,树的深度为n,其平均查找长度为(n + 1) / 2。也就是时间复杂度为O(n),等同于顺序查找。因此,如果希望对一个集合按二叉排序树查找,最好是把它构建成一棵平衡的二叉排序树(平衡二叉树)。
Reference:
[1] 《大话数据结构》
[2] wikipedia: 二叉查找树